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Abstract

Keyphrase generation aims to summarize long
documents with a collection of salient phrases.
Deep neural models have demonstrated a re-
markable success in this task, capable of pre-
dicting keyphrases that are even absent from
a document. However, such abstractiveness
is acquired at the expense of a substantial
amount of annotated data. In this paper, we
present a novel method for keyphrase genera-
tion, AutoKeyGen, without the supervision
of any human annotation. Motivated by the
observation that an absent keyphrase in one
document can appear in other places, in whole
or in part, we first construct a phrase bank
by pooling all phrases in a corpus. With this
phrase bank, we then draw candidate absent
keyphrases for each document through a par-
tial matching process. To rank both types
of candidates, we combine their lexical- and
semantic-level similarities to the input docu-
ment. Moreover, we utilize these top-ranked
candidates as to train a deep generative model
for more absent keyphrases. Extensive experi-
ments demonstrate that AutoKeyGen outper-
forms all unsupervised baselines and can even
beat strong supervised method in certain cases.

1 Introduction

Keyphrase generation aims to produce a list of short
phrases to summarize and characterize a long doc-
ument (e.g., research papers and news articles). It
has a wide spectrum of applications, to name a few,
information retrieval (Jones and Staveley, 1999),
text summarization (Zhang et al., 2004), and text
categorization (Hulth and Megyesi, 2006).

The trade-off between the capability of gener-
ating absent keyphrases (i.e., phrases do not ap-
pear in the original document) and the reliance on
document-keyphrase supervision has long existed
among keyphrase generation methods.

Extractive methods (Hasan and Ng, 2010; Shang
et al., 2018; Bennani-Smires et al., 2018) can only

predict phrases that appear in the original docu-
ment. Nevertheless, many of them do not need
any direct supervision and they demonstrate great
robustness across various genres of text. Some
studies expand the extraction scope from the in-
put document to its neighbor documents (Wan and
Xiao, 2008; Florescu and Caragea, 2017), but they
still cannot predict absent keyphrases well. Meng
et al. (2017) has shown that in scientific documents,
up to 50% of keyphrases are absent from the source
text, yet they can be helpful for applications such as
search and recommendation (Boudin and Gallina,
2021).

With the advance of deep neural networks, re-
cent studies (Meng et al., 2017; Chen et al., 2019;
Sun et al., 2019; Alzaidy et al., 2019; Yuan et al.,
2018; Meng et al., 2020) are capable of generat-
ing keyphrases, according to their semantic rele-
vance to a document, no matter they are present
or not. Although these methods have achieved
state-of-the-art performance, all these deep models
are supervised and typically require a tremendous
number of document-keyphrase pairs, which could
be expensive and laborious to collect. For exam-
ple, Meng et al. (2017) utilized more than 500,000
author-annotated scientific papers to train a RNN
model. Similarly, Xiong et al. (2019) collected
68,000 webpages and have them annotated by pro-
fessional annotators.

In this paper, we aim to alleviate this trade-off
by proposing an unsupervised method that can gen-
erate both present and absent keyphrases without
utilizing any human annotations. We observe that
absent keyphrases of a document can be present in
other documents as present keyphrases. Also, many
absent keyphrases in fact appear in the original doc-
ument in part as separate tokens. For example, in
the Inspec dataset, one of the benchmark datasets
in keyphrase generation, 99% of absent keyphrases
can be found in other documents. And for 56.8%
of absent keyphrases, all their tokens separately
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Input Corpus

A method of modeling virtual worlds 
in databases is presented. The virtual 
world model is conceptually divided 
into several distinct elements, which 
are separately represented in a 
database. The model pen-nits to 
dynamically generate virtual scenes.

Pulse-code modulation (PCM) with 
embedded quantization allows the rate 
of the PCM bitstream to be reduced by 
simply removing a fixed number of 
least significant bits from each 
codeword. Although this source 
coding technique is extremely simple, 
it has poor coding efficiency. In this 
paper, we present a generalized PCM 

This paper shows the importance that 
management plays in the protection of 
information and in the planning to 
handle a security breach when […] is 
becoming necessary, if not mandatory, 
for organizations to perform ongoing 
risk analysis to protect their systems. 
Organizations need to realize that the 
theft of information is a management 
issue as well as a technology one […]

Tailored seq2seq

Phrase Bank

security breach
risk analysis
…
information system
…

Input Document

Top-ranked Candidates

Absent Keyphrases:
information system management; 
information system; 
security management;
…

Present Keyphrases:
security breach;
risk analysis;
…

Absent Candidates:
information system; 
…

Present Candidates:
security breach;
risk analysis;
…

Model Building Stage

Candidate Generation (Unseen) Test Document

Input Document

Top-ranked Candidates

Inference Stage

Figure 1: An overview of our proposed AutoKeyGen framework with a part of real example. The full version of
the example can be found in our case study.

appear in the input document.
Inspired by these observations, we propose a

novel unsupervised deep keyphrase generation
method AutoKeyGen as illustrated in Figure 1.
Specifically, we first follow previous works (Hasan
and Ng, 2010; Shang et al., 2018; Bennani-Smires
et al., 2018) to extract candidate present keyphrases
from all documents and then pool them together
into a phrase bank. From this present phrase bank,
we can now draw candidate absent keyphrase for
each document through a partial matching pro-
cess, requiring each stemmed word in the candidate
phrase should exist in the input document. To rank
both types of keyphrases, we fuse two popular mea-
surements in unsupervised keyphrase extraction
methods, i.e., the TF-IDF score at the lexical level
and embedding similarity at the semantic level. We
further utilize these top-ranked present and absent
candidates as “silver” data to train a deep gener-
ative model. This generative model is expected
to augment absent keyphrases by a biased beam
search method, which encourages the model to pre-
dict words from the input document instead of from
the vocabulary.

Extensive experiments show that AutoKeyGen
outperforms all unsupervised baselines consis-
tently, and even the strong supervised baseline in
certain cases.

Our contributions are summarized as follows:
• We make two important observations about ab-

sent keyphrases, illuminating the feasibility of
training abstractive keyphrase models in an unsu-
pervised manner.

• We propose a novel unsupervised deep keyphrase
generation method AutoKeyGen that can per-
form well on predicting both present and absent

keyphrases.
• We conduct extensive experiments on five bench-

mark datasets and demonstrate the superiority
of our method AutoKeyGen over unsupervised
baselines. On some datasets, AutoKeyGen
even yields better results than state-of-the-art su-
pervised methods.

Reproducibility. We release our codes and
datasets on GitHub.1

2 Problem Formulation

In this work, we aim to build a keyphrase gen-
eration model solely based on a collection of
documents D, without any keyphrase annotation.
Keyphrase generation is typically formulated and
evaluated as a ranking problem. Given an (un-
seen) input document x, the goal of this task is to
output a ranked list of keyprhases Y . We denote
the input document as a sequence of tokens, i.e.,
x = [x1, . . . , x|x|]. Here, |x| is the total number of
tokens in this document.

Depending on whether a keyphrase appears in
the input document or not as a whole unit, one can
categorize the keyphrases in Y into two ranked
lists: (1) Present keyphrase ranked list, YP =
{yp

1, . . . ,y
p
|YP |} and (2) Absent keyphrase ranked

list: YA = {ya
1 , . . . ,y

a
|YA|}. Here, |YP |/|YA| is

the number of present/absent keyphrase predictions
respectively. That is, Y =< YP ,YA >. Each
keyphrase is also a sequence of tokens, which can
contain single or multiple tokens.

1https://github.com/Jayshen0/
Unsupervised-Deep-Keyphrase-Generation
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3 Our AutoKeyGen Method

Overview. As shown in Figure 1, the training pro-
cess of AutoKeyGen consists of three steps: (1)
pool the candidate present keyphrases from all doc-
uments together as a phrase bank and then draw
candidate absent keyphrases for each document; (2)
rank all these candidates based on TF-IDF informa-
tion and embedding similarity between document
and candidate phrase; (3) train a Seq2Seq gener-
ative model using the silver labels derived from
the second step to generate more candidate phrases
that might be absent in the document or missed in
the previous steps.

When it comes to the inference for new docu-
ments, AutoKeyGen will extract candidates fol-
lowing the phrase bank and generate candidates
using the Seq2Seq model, and then, rank these
candidates together following the same ranking
module as (2).

3.1 Phrase Bank for Absent Keyphrases

Phrase Bank Construction. As aforementioned,
absent keyphrases in one document often appear
in other documents. For example, in the Inspec
dataset, one of the benchmark datasets in keyphrase
generation, 99% absent keyphrases are present
keyphrases in some other documents; Therefore,
we first construct a phrase bank by pooling together
the present candidates extracted from every docu-
ment in the raw document collection D. Specifi-
cally, we follow the literature (Hasan and Ng, 2010;
Shang et al., 2018; Bennani-Smires et al., 2018)
to extract candidate present keyphrases from all
documents. The details can be found in the imple-
mentation details in the experiments section.
Absent Candidate Generation. In many cases,
tokens of an absent keyphrase can in fact be found
in the source document but not in a verbatim man-
ner. For example, in the Inspec dataset, 56.8%
absent keyphrases have all their tokens separately
appeared in the input document. This inspires us
to conduct a partial match as follows. Given an
input document x, one can iterate all phrases in
the phrase bank and take as candidates the phrases
that all tokens appear in x (after stemming). We
enforce the strict requirement of all tokens as the
phrase bank is huge and there would be too many
candidates that can partially appear in x. For the
sake of efficiency, we implement this process via
an inverted index mapping document tokens to the
phrase bank, so practically we do not have to scan

the entire phrase bank for each document.

3.2 Ranking Module
The keyphrase generation aims to provide a ranked
list of phrases, so we need to rank the obtained
candidates. From the literature, we notice that both
lexical and semantic level similarities are important
and effective in keyphrase ranking. In this paper,
we combine both types of similarities.
Embedding Similarity. According to Bennani-
Smires et al. (2018), modern embedding methods,
such as Doc2Vec (Lau and Baldwin, 2016), are able
to encode phrases and documents into a shared la-
tent space, then the semantic relatedness can be
measured by the cosine similarity in this space. We
follow this work and use the Doc2Vec model pre-
trained on the large English Wikipedia corpus to
generate 300-dimension vectors for both the input
document and its candidate phrases. Specifically,
we denote the embedding of the document x and
the candidate phrase c as E(x) and E(c), respec-
tively. Their semantic similarity is defined as

Semantic(x, c) =
||E(x) · E(c)||
||E(x)|| · ||E(c)||

TF-IDF Information. TF-IDF, measuring the
lexical-level similarity, has been observed as a sim-
ple yet strong baseline in literature (Meng et al.,
2017; Campos et al., 2018). Specifically, for a doc-
ument x in corpus D, the TF-IDF score of phrase c
is computed as:

Lexical(x, c) =
TF(c,x)

|x|
log

|D|
DF(c,D)

where |x| is the number of word in document x,
TF(c,x) is the term frequency of c in x, DF(c,D)
is the document frequency of c in D.
Fused Ranking. We observe that the embedding-
based similarity and TF-IDF have different behav-
iors when the documents are of different lengths.
Semantic representation learning such as Doc2Vec
is reliable for both short and relatively longer doc-
uments (Lau and Baldwin, 2016). TF-IDF works
more stable when the document is sufficiently long.
Therefore, it is intuitive to unify these two heuris-
tics for present keyphrases. We propose to combine
them using a geometric mean as follows.

RankScore(x, c) =
√

Semantic(x, c) · Lexical(x, c)

The higher the RankScore(x, c) is, the more likely
the candidate phrase c is a keyphrase for the docu-
ment x.



3.3 Generation Module

Using our phrase bank, we can cover more than
90% of present keyphrases, however, less than
30% of absent keyphrases are included. To bring
more absent candidates, we train a Seq2Seq gen-
erative model using the highest scored document-
keyphrase pairs from the ranking module’s results.
Specifically, we pair each document with the top-5
present candidates and top-5 absent candidates, and
use these pairs as silver labels for training.
Classical Encoder-Decoder Model. The encoder
is implemented with BiLSTM (Gers and Schmidhu-
ber, 2001) and the decoder is implemented LSTM.
The encoder maps a sequence of tokens in x to
a sequence of continuous hidden representations
(h1

enc, . . . ,h
|x|
enc) where |x| is length of the docu-

ment, an RNN decoder then generates the target
keyphrase (y1, y2, . . . , y|y|) token-by-token in an
auto-regressive manner (|y| denotes the number of
tokens in the keyphrase):

ht
enc = fenc(h

t−1
enc , x

t),

c = q(h1enc, h
2
enc, ..., h

|x|
enc),

ht
dec = fdec(h

t−1
dec , o

t−1, c)

where ht
enc, and ht

dec are hidden states at time t for
encoder and decoder respectively; fenc and fdec are
auto-regressive functions implemented by LSTM
cells; ot−1 is the predicted output of decoder at
time t− 1; and c is the context vector derived from
all the hidden states of encoder though a non-linear
function q.

At timestep t, the prediction of yt is determined
based on a distribution over a fixed vocabulary,
conditioned on the source representations henc and
previously generated tokens represented as ht−1

dec :

pg(y
t|y1,...,t−1,x) = fout(y

t−1,ht
dec, c)

where fout is a non-linear function, typically a soft-
max classifier with an attention mechanism, that
outputs the probabilities over all the words in a
preset vocabulary V .
Our Tailored Seq2Seq Generative Model. We
use guided beam search to generate diverse
keyphrases for each document. Previous
work (Meng et al., 2017) has shown that even when
the gold labels are available, a vanilla Seq2Seq
model would collapse and fail to generate high-
quality candidate phrases. Since we only train the
model with silver labels, to improve the generating

Table 1: Statistics of datasets. Only the supervised
model CopyRNN uses document-keyphrase labels and
the validation set. All other methods use raw docu-
ments from the KP20k training set as input.

Dataset Train Valid Test

KP20k 514,154 19,992 19,987
Inspec - 1,500 500

Krapivin - 1,844 460
NUS - - 211

SemEval - 144 100

quality, we encourage the decoder model to gen-
erate words that appear in the input document x.
More specifically, we double the probabilities of
the words occurred in the input document. Note
that, words which do not appear in the input docu-
ment can still be generated so the diversity can be
maintained. This also matches our observation that
many absent keyprhases have all their tokens in the
input document.
Relationship to Copy Mechanism. In fact, our
tailored Seq2Seq model reassembles the copy
mechanism proposed in (Meng et al., 2017) and
can be viewed as a special version by assuming
all tokens in the input documents follows a similar
distribution as estimated by the encoder-decoder
model.

As shown in Meng et al. (2017), the copy mech-
anism is useful for generating keyword extraction
because it gives high probabilities to the words that
exist in the input document. This is achieved by an
extra probability term.

pc(y
t|y1,...,t−1,x) = 1

Z

∑
j:xj=yt

exp(ψ(xj)), y
t ∈ x

ψ(xj) = σ((hj
dec)

TW )st,

where σ is a non-linear function, W is a learned pa-
rameter matrix, and Z is the sum of the scores used
for normalization. For CopyRNN, the probability
of generating yt is the sum of pg and pc.

4 Experiments

In this section, we first introduce datasets used
in this study, followed by baselines, evaluation
metrics, and details of implementation. Then,
we present and discuss the experiment results of
present keyphrase and absent keyphrase generation.

4.1 Datasets
We follow previous keyphrase generation stud-
ies (Meng et al., 2017; Ye and Wang, 2018;



Table 2: F1 scores of present keyphrase prediction on five scientific publication datasets. ExpandRank is too slow
to be evaluated on the KP20k dataset. Supervised-CopyRNN results are from its original work (Meng et al., 2017).

Kp20K Inspec Krapivin NUS SemEval

Model @5 @10 @O @5 @10 @O @5 @10 @O @5 @10 @O @5 @10 @O

TF-IDF 7.2 9.4 6.3 24.2 28.0 24.8 11.5 14.0 13.3 11.6 14.2 12.5 16.1 16.7 15.3
SingleRank 9.9 12.4 10.3 21.4 29.7 22.8 9.6 13.6 13.4 13.7 16.2 18.9 13.2 16.9 14.7
TextRank 18.1 15.1 14.1 26.3 27.9 26.0 14.8 13.9 13.0 18.7 19.5 19.9 16.8 18.3 18.1

ExpandRank N/A N/A N/A 21.1 29.5 26.8 9.6 13.6 11.9 13.7 16.2 15.7 13.5 16.3 14.4
EmbedRank 15.5 15.6 15.8 29.5 34.4 32.8 13.1 13.8 13.9 10.3 13.4 14.7 10.8 14.5 13.9
AutoKeyGen 23.4 24.6 23.8 30.3 34.5 33.1 17.1 15.5 15.8 21.8 23.3 23.7 18.7 24.0 22.7

AutoKeyGen-OnlyBank 22.9 23.1 23.1 29.7 32.8 32.1 15.9 14.3 14.2 20.7 21.8 22.3 16.3 20.9 20.4
AutoKeyGen-OnlyEmbed 21.2 22.9 21.8 29.7 34.8 32.7 15.9 16.4 14.3 20.4 21.3 22.6 15.3 16.5 15.9

Supervised-CopyRNN 32.8 25.5 N/A 29.2 33.6 N/A 30.2 25.2 N/A 34.2 31.7 N/A 29.1 29.6 N/A

Meng et al., 2019; Chen et al., 2019) and adopt
five scientific publication datasets for evaluation.
KP20k is the largest dataset in scientific keyphrase
studies thus far. There are four other widely-
used scientific datsets for comparing different
models: Inspec (Tomokiyo and Hurst, 2003),
Krapivin (Krapivin et al., 2009), NUS (Nguyen
and Kan, 2007), and SemEval-2010 (Kim et al.,
2010). Table 1 presents the details of all datasets2.

All the models in our experiments are built on
the KP20k training set. Only the supervised model
CopyRNN uses document-keyphrase labels and
the validation set. All other methods use raw docu-
ments from the KP20k training set as input. Once
the model is built, it will be applied to all the five
test sets for evaluations.

4.2 Compared Methods

We compare AutoKeyGen with five other unsu-
pervised methods.
• TF-IDF (Jones, 1972) ranks the extracted noun

phrase candidates by term frequency and inverse
document frequency in the given documents.

• TextRank (Mihalcea and Tarau, 2004) simulates
the word as web page, then uses the PageRank
algorithm to find the keyphrases.

• ExpandRank (Florescu and Caragea, 2017) is
an extension of TextRank utilizing Emebedding
similarity to get neighbouring documents to set a
better edge weight in the PageRank (Page et al.,
1999) algorithm.

• EmbedRank (Bennani-Smires et al., 2018) di-
rectly uses embedding similarity to rank the
present candidate keyphrase and uses Maximal
Marginal Relevance (MMR) (Carbinell and Gold-
stein, 2017) to increase the diversity of extracted

2Dataset release is from https://github.com/
memray/OpenNMT-kpg-release

keyphrases.

For ablation studies, we compare some variants of
our AutoKeyGen method as follows.

• AutoKeyGen-OnlyBank only uses the partial
match between the phrase bank and the input doc-
ument to extract keyphrase candidates without
any seq2seq model.

• AutoKeyGen-OnlyEmbed ranks the candidate
phrases with only the embedding similarity with-
out the TF-IDF information.

We also present Supervised-CopyRNN (Meng
et al., 2017), which trains CopyRNN on the labeled
KP20K dataset to generate keyphrases. Since it is
trained based on gold labels, we regard it as an
upper bound of all other unsupervised methods.

4.3 Evaluation Metrics

Following the literature, we evaluate the model
performance on generating present and absent
keyphrases separately. If some models generate
the two types of keyphrases in a unified ranked list,
we split them into two ranked lists by checking
whether or not the phrases appear in the input doc-
ument. The relative ranking between the phrases
of the same type is therefore preserved.

We use R@k, F1@k, and F1@O (Yuan et al.,
2018) as main evaluation metrics. Specifically,
F1@5, F1@10, and F1@O are utilized for evaluat-
ing present keyphrases and R@10 and R@20 for
absent keyphrases. We report the macro-average
scores over all documents in each test set.

Specifically, given a ranked list of keyphrases,
either present or absent, Ŷ = (ŷ1, . . . , ŷ|Ŷ|) and
the corresponding groundtruth keyphrase set Y ,
we first truncate it with a cutoff k (i.e., Ŷ:k =
(ŷ1, . . . , ŷmin (k,|Ŷ|))) and then evaluate its preci-

https://github.com/memray/OpenNMT-kpg-release
https://github.com/memray/OpenNMT-kpg-release


Table 3: Recall scores of absent keyphrase prediction on five scientific publications datasets. ExpandRank is too
slow to be evaluated on the KP20k dataset.

Kp20K Inspec Krapivin NUS SemEval

Model R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20

Other Unsupervised Methods 0 0 0 0 0 0 0 0 0 0
ExpandRank N/A N/A 0.02 0.05 0.01 0.015 0.005 0.04 0 0.004
AutoKeyGen 2.3 2.5 1.7 2.1 3.3 5.4 2.4 3.2 1.0 1.1

AutoKeyGen-OnlyBank 1.8 2.2 1.5 1.7 3.1 4.1 2.1 2.6 0.7 0.9

Supervised-CopyRNN 11.5 14.0 5.1 6.8 11.6 14.2 7.8 10.0 4.9 5.7

sion and recall:

P@k =
|Ŷ:k ∩ Y|
|Ŷ:k|

, R@k =
|Ŷ:k ∩ Y|
|Y|

F1@k is the harmonic mean of P@k and R@k.
F1@O can be viewed as a special case of F1@k
when k = |Y|. In other words, we only examine
the same amount of keyphrases as the number of
our groundtruth keyphrases.

We apply Porter Stemmer provided by
NLTK (Bird et al., 2009) to both ground-truth and
predicted keyphrases to determine whether phrases
appear in the original document and whether two
keyphrases match or not.

4.4 Implementation Details

For all the methods that involve keyphrase extrac-
tion, we utilize the open-source toolkit pke3 for
phrase candidate generation. The window size of
the graph-based models SingleRank, TextRank and
ExpandRank has been searched from 2 to 10, and
again, the best performance is selected.

The vocabulary V in the seq2seq model consists
of 50,000 most frequent words. We train the model
for 500,000 steps and select the last checkpoint for
inference. The dimension of LSTM cell is 256, the
embedding dimension is 200, and the max length
of source text is 512. Models are optimized using
Adagrad (Duchi et al., 2011) with initial learning
rate sets to 0.001, and will be linearly decayed
by 0.8 after every 5 epochs. The beam size for
keyphrase generating beam search is 20.

4.5 Present Keyphrase Evaluation

The results of present keyphrase generation are
listed in Table 2. Overall, AutoKeyGen achieves
the best F1@5, F1@10 and F1@O performances
among all the unsupervised methods. EmbedRank
is arguably the strongest baseline method, however,

3https://github.com/boudinfl/pke

AutoKeyGen outperforms it on many datasets
with a significant margin.

One can easily see that AutoKeyGen outper-
forms on all the datasets than AutoKeyGen-
OnlyEmbed. It shows that the TF-IDF informa-
tion adds values to the embedding-based ranking
heuristic. The AutoKeyGen-OnlyEmbed model
performs about the same as AutoKeyGen on the
Inspec dataset, because the length of document in
the Inspec dataset is the shortest among all other
dataset. As we discussed earlier, TF-IDF is more
stable when the documents are sufficiently long.

The obvious advantage of AutoKeyGen over
AutoKeyGen-OnlyBank demonstrates that our
generation module does generate some “novel”
present phrases beyond the scope of the extractor.

It is worth mentioning that on the Inspec dataset,
AutoKeyGen is even better than the Supervised-
CopyRNN method.

4.6 Absent Keyphrase Evaluation

Table 3 presents the model comparison on absent
keyphrase generation. Following (Meng et al.,
2017), only recall score is reported as compari-
son. Since all unsupervised baseline methods ex-
cept ExpandRank are not capable of generating
any absent keyphrases, we refer to them together
as “Other Unsupervised Methods”. Among all un-
supervised models, AutoKeyGen has the best re-
call on all the datasets. Therefore, we argue that
AutoKeyGen unleashes the potential to derive
high-quality absent keyphrases under the unsuper-
vised setting.

Comparing AutoKeyGen with AutoKeyGen-
OnlyBank, one can tell that the generation module
does help improve the performance.

4.7 Case Studies

Figure 2 presents a case study from the NUS test
set. Parts of this case study have been presented in
the overview of AutoKeyGen, i.e., Figure 1.

https://github.com/boudinfl/pke


This paper shows the importance that management plays in the protection of information and in the planning to handle a 

security breach when a theft of information happens. Recent thefts of information that have hit major companies have 

caused concern. These thefts were caused by companies' inability to determine risks associated with the protection of 

their data and these companies lack of planning to properly manage a security breach when it occurs. It is becoming 

necessary, if not mandatory, for organizations to perform ongoing risk analysis to protect their systems. Organizations 

need to realize that the theft of information is a management issue as well as a technology one, and that these recent 

security breaches were mainly caused by business decisions by management and not a lack of technology. 

Ground Truth: {security breach, risk analysis, management issue, theft of information} 

 

AutoKeyGen (ordered): security breach, risk analysis, information, security, business decisions, management issue  

 

Ground Truth: {Information security,  information system, case of information theft, information security management, 
human factor, data protection procedure, security management} 

 

AutoKeyGen (ordered): security risk, information system, information management, information security management, 

import concern, data mine, security management, data management 
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Figure 2: A case study of AutoKeyGen from the NUS test set. Present keyphrases are marked bold in the
input document. Tokens in the input document related to absent keyphrases are underlined. Correctly predicted
keyphrases are highlighted in red. The green one is a correct phrase predicted by our generating module, which is
omitted by noun phrase extraction method.

Inspec NUS Semeval Krapivin KP20K
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Figure 3: The recall of absent keyphrases using all the
phrases in phrase bank on five datasets.

“Recent security breach” is extracted as a
keyphrase by the conventional noun phrase extrac-
tor, but our method successfully removes the “re-
cent” and generates the phrase candidate “security
branch” which is a groundtruth present keyphrase.
This is mainly benefited from our tailored extractor.

As for the absent keyphrase, our method success-
fully generated “information system” and “informa-
tion security management” from the phrase bank.
That is, these two phrases were extract from other
documents. Since all their tokens appear in this
document, they are added as absent candidates.

Our method can not only obtain absent
keyphrases from the phrase bank, but also generate
keyphrases from the tailored seq2seq generative
model. In this case, “security risk”, “information
management”, and “security management” are all
generated by the generation module. Although
some of them are not perfectly matched with ab-
sent ground truth keyphrases, they contain similar

meanings. Therefore, we believe our generative
model does have a potential to produce reliable
absent keyphrases.

4.8 Candidate Absent Keyphrase Quality

Figure 3 presents the intersection between the
phrase bankd and the groundtruth absent keyphrase.
It serves as an upper bound of the recall of
the absent keyphrases for the extractive part of
AutoKeyGen. However, such upper bounds are
very loose, as the number of generated absent can-
didates from the phrase bank is too big. However,
this does suggest that there is a great potential of
the deep unsupervised keyphrase generation, if one
can come up with a better ranking module for ab-
sent keyphrases.

5 Related Work

In this section, we mainly review the literature re-
lated to the following three areas, (1) keyphrase
generation, (2) word and document embeddings,
and (3) encoder-decoder models.

5.1 Kerphrase Generation

Most of the existing algorithms have addressed the
task of keyphrase extraction through two steps (Liu
et al., 2009; Tomokiyo and Hurst, 2003). The first
step is to acquire a list of keyphrase candidates.
Previous studies use n-grams or noun phrases with
certain part-of-speech patterns to identify potential
candidates (Hulth, 2003; Le et al., 2016; Wang



et al., 2016). AutoPhrase (Shang et al., 2018)
serves as another option to extract high-quality
candidates, using a distant supervised phrase min-
ing method leveraging open-domain knowledge,
such as Wikipedia. The second step is to rank
candidates on their importance to the document us-
ing either supervised or unsupervised approaches
with manually-defined features (Kelleher and Luz,
2005; Florescu and Caragea, 2017). Florescu and
Caragea (2017) tries to score the candidate phrases
as the aggregation of its words score, but over-
generation erros will happen. Saxena et al. (2020)
transforms keyphrase extraction into classification
problem using evolutionary game theory.

The major common drawback of these keyphrase
extraction methods is that they can only extract
keyphrases that already appear in the source text
and thus they fail to predict keyphrases in a differ-
ent word order or some synonymous keyphrases.

To address this issue, keyphrase generation meth-
ods have been proposed such as CopyRNN (Meng
et al., 2017) and CopyCNN (Zhang et al., 2017).
These methods utilize an encoder-decoder archi-
tecture, treating the title and main text body as the
source information and keyphrases as the target to
predict. However, those approaches ignore the lead-
ing role of the title in the document structure. To
fully leverage the title information, Ye and Wang
(2018) proposed a semi-supervised learning ap-
proach that generates more training pairs and Chen
et al. (2019) proposed to take title features as a
query to guide the decoding process. Swaminathan
et al. (2020) firstly applies GAN to keyphrase ex-
traction problem, and it presents a new promising
direction for keyphrase extraction problem.

Our work is fully unsupervised, thus being sig-
nificantly different from these existing generation
methods that rely on human annotations.

5.2 Word and Document Embeddings

Embddings (Mikolov et al., 2013) represents words
as vectors in a continuous vector space. It’s widely
used in many NLP problems, since embeddings
methods take advantages over the classic bag-of-
words representation considering it can capture
semantic relatedness with acceptable dimensions.
The state-of-the-art embeddings methods such as
(Lau and Baldwin, 2016) is able to infer a vector of
a document via a embedding network. In this way,
the embeddings of a short phrase and a long docu-
ment can be represented in a shared vector space,

which make it feasible to derive their semantic re-
latedness directly with the embedding similarity.

5.3 Encoder-Decoder Model

The RNN-based encoder-decoder architecture was
first introduced by Cho et al. (2014) and Sutskever
et al. (2014) for machine translation problems. It
has also achieved great successes in many other
NLP tasks (Serban et al., 2016; Liu et al., 2019).
Encoder-decoder model is also used for keyphrase
extraction problem. Some work (Chen et al., 2020;
Allamanis et al., 2016) tried to copy certain parts of
source text when generating the output. See et al.
(2017) enhanced this architecture with a pointer-
generator network, which allows models to copy
words from the source text. Celikyilmaz et al.
(2018) proposed an abstractive system where multi-
ple encoders represent the document together with
a hierarchical attention mechanism for decoding.

6 Conclusions and Future Work

In this paper we propose an unsupervised deep
keyphrase generation method to derive present
keyphrases and absent keyphrases from the docu-
ment itself. Our design is inspired by two intuitive
observations. Extensive experiments demonstrate
the superiority of our method against existing un-
supervised models in terms of both present and
absent keyphrases.

In the future, we plan to enhance the silver label
quality for the deep generative model, so the absent
keyphrase generation could be further improved.
One possible way is to filter the candidate phrases
according to the keyphrases correlations. Another
promising direction is to leverage the intrinsic ar-
ticle structure, such as title-body relations, for a
self-supervised learning.
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